Self-Organizing Maps in High Energy Physics
نویسندگان
چکیده
Abstract The Self-Organizing-Map (SOM) is a widely used neural network for dimensional reduction and clustering. It has yet to find its use in high energy physics. This paper discusses two applications of SOM: first, we map regions with relative content rare process ( H → WW *). Second obtain Monte Carlo normalization factors different physics processes by fitting the dimensionally reduced representation. Analysis training are performed on ATLAS open data.
منابع مشابه
using game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Green Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملSelf-Organizing Visual Maps
This paper deals with automatically learning the spatial distribution of a set of measurements: images, in the examples presented here. The solution to this problem can be viewed as an instance of robot mapping although it can also be used in other contexts. We examine the problem of organizing an ensemble of images of an environment in terms of the positions from which the images were obtained...
متن کاملSelf-organizing Maps
A topographic map is a two-dimensional, nonlinear approximation of a potentially high-dimensional data manifold, which makes it an appealing instrument for visualizing and exploring high-dimensional data. The Self-Organizing Map (SOM) is the most widely used algorithm, and it has led to thousands of applications in very diverse areas. In this chapter, we will introduce the SOM algorithm, discus...
متن کاملAligned Self-Organizing Maps
− The concept of similarity is important for many data mining related applications such as content-based music retrieval. Defining similarity can be very difficult if several aspects are involved. For example, music similarity depends on the melody, rhythm, or instruments. The Self-Organizing Map is a powerful tool to visualize how the data looks like from a certain perspective of similarity. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2438/1/012120